Tuesday, March 28, 2017

Bottlenose Dolphins: The Ultimate Sea Bully? (A Guest Post)

By Kayla Fuller

Imagine this situation: you’ve brought your favorite lunch to work. Everyone is jealous of your food, continuously eyeing it up. A few coworkers, who have brought in disappointing lunches in comparison, approach and demand that you hand it over. After you refuse, they beat you until your body lies lifeless and they take your lunch anyway.

Woah, woah, woah… that took a dramatic turn!

Photo of a harbour porpoise, taken by AVampireTear (Wikimedia Commons)

But for harbour porpoises in the northeastern Atlantic, this fight for food has become a reality, and bottlenose dolphins are the suspected culprit. In 1996, Harry M. Ross (SAC Veterinary Services, U.K.) and Ben Wilson (University of Aberdeen, U.K.) documented fractured rib cages, damaged internal organs and joint dislocations of deceased harbour porpoises in the northeastern Atlantic. Why would bottlenose dolphins be causing such damage? Who could ever associate such a cute and cuddly creature with a horrific crime like this?

Photo of a bottlenose dolphin, taken by NASA (Wikimedia Commons)

Researchers Jérôme Spitz, Yann Rousseau, and Vincent Ridoux with the Center for Research on Marine Mammals: Institute for Coastal and Environmental Research at the University of La Rochelle in France become the judge and jury in this trial. Jérôme, Yann, and Vincent obtained 29 harbour porpoises and 25 bottlenose dolphins that had been beached and died in the Bay of Biscay (between Spain, France, and England). At the time of the study, more harbour porpoises were being found dead in the bay than in previous years. They hypothesized that bottlenose dolphins and harbour porpoises may have had similar enough diets to cause competition and violence between the two species.

Photo of a harbour porpoise that received injuries thought to be from a
bottlenose dolphin before death (circled), from Ross and Wilson (1996)

The researchers’ goal was to analyze stomach contents to directly see what each mammal was eating at the time of their death. To do this, Jérôme, Yann, and Vincent removed the stomachs from the harbour porpoise bodies and weighed them with all contents included. After weighing stomach casings separately, they calculated total weight inside of the animals’ stomachs. Then, they washed stomach contents through a filter to separate out larger matter. Now, if you have a weak stomach, this probably wouldn’t be the job for you. Jérôme, Yann, and Vincent separated food items within the stomachs into identifiable categories. It could sometimes be difficult to recognize whole animals in a stomach due to breakdown, so methods like pairing dismantled eyes or counting fish bones was necessary to identify them! This same process was repeated for bottlenose dolphin carcasses. From there, the scientists compared specimens for prey presence, abundance, mass, and size to see if there was overlap between diets of the harbour porpoises and bottlenose dolphins.

So what did they find? More food mass, a greater number of species, and a more diverse size range of prey was found in the stomachs of bottlenose dolphins in comparison to harbour porpoises. Although bottlenose dolphins have a habitat that includes more deep-ocean areas while harbor porpoises inhabit coastal surroundings, certain prey species were eaten by both. Since bottlenose dolphins are bigger and hunt in larger groups, they would logically be more dominant in a face-off over a common prey item. Why are they fighting more over the same foods? This shift could be a result of humans harvesting species from the ocean that are diet items for bottlenose dolphins. It could also be a result of warming ocean temperatures that could be changing the dwelling places of available food for bottlenose dolphins. This would explain why more habour porpoises are being attacked by these marine tyrants moving into shallower waters.

Poor porpoises, all they want to do is eat their lunch in peace. Who knows, maybe in the next few million years, we’ll see highly evolved harbour porpoises covered in spikes to ward off the dolphins. That’ll teach those bullies!


References:

Ross, H., & Wilson, B. (1996). Violent Interactions between Bottlenose Dolphins and Harbour Porpoises Proceedings of the Royal Society B: Biological Sciences, 263 (1368), 283-286 DOI: 10.1098/rspb.1996.0043

Spitz, J., Rousseau, Y., & Ridoux, V. (2006). Diet overlap between harbour porpoise and bottlenose dolphin: An argument in favour of interference competition for food? Estuarine, Coastal and Shelf Science, 70 (1-2), 259-270 DOI: 10.1016/j.ecss.2006.04.020

Tuesday, March 21, 2017

The Weirdest Animals on Earth: 12 Amazing Facts About Platypuses

What IS that? A photo by Stefan Kraft at Wikimedia Commons.
1. Platypuses are so strange, that when British scientists first encountered one, they thought it was a joke: A Governor of New South Wales, Australia, sent a platypus pelt and sketch to British scientists in 1798. Even in their first published scientific description of the species, biologists thought that this duck-beaked, beaver-bodied, web-footed specimen may be some Frankenstein-like creation stitched together as a hoax. But this is only the beginning of their oddities…

2. Platypuses are egg-laying mammals. Mammals are animals that have a backbone, are warm-blooded, and females produce milk for their young. Most females that nurse their young also carry their developing babies in their bodies and give birth to live young… But platypuses don’t play by those rules. Platypuses are monotremes, egg-laying mammals that include the platypus and four species of echidna. Most female mammals have two functional ovaries, but female platypuses, like most female birds, only have a functional left ovary. Once a year, a female platypus may produce a clutch of two or three small, leathery eggs (similar to reptile eggs), that develop in her uterus for 28 days. Because female platypuses don’t even have a vagina, when the eggs are ready, she lays them through her cloaca, an opening that serves for reproduction, peeing and pooping. (In fact, monotreme comes from the Greek for “one hole”). She then curls around them and incubates them for another 10 days until they hatch.



3. Platypuses sweat milk! Not only do female platypuses not have vaginas, they don’t have nipples either! Instead, lactating mothers ooze milk from pores in their skin, which pools in grooves on their bellies so the babies can lap it up. …And they’re not even embarrassed about it!

4. Adult platypuses are toothless. Baby platypuses (that is the actual technical term for them, by the way… not “puggles”, which would be way more fun) are born with teeth but they lose them around the time that they leave the breeding burrow. In their place are rigid-edged keratinized pads that they use as grinding plates. When they catch their prey (worms, bugs, shrimp, and even crayfish), they store it in their cheek pouches and carry it to the surface, where they use gravel to crush it in their toothless maw.

5. The platypus “duck bill” is a sensory organ used to detect electric fields. Muscles and neurons use electrical impulses to function, and these impulses can be detected by electroreceptors. Although common in shark and ray species, electroreception is rare in mammals, only having been discovered in monotremes and the Guiana dolphin. Platypuses have rows of around 40,000 electroreceptors on their highly sensitive bill, which they wave back and forth in the water, much like a hammerhead shark, to determine the location of their prey. It’s a good thing this sense is so sensitive, since they close their eyes, nose and ears every time they dive.



6. Platypuses don’t use their tails like beavers do. Whereas beavers use their large, flat, leathery tails for swimming and slapping the water to send signals, platypuses don’t use their tails for any of that. Platypuses have large, flat tails for storing fat in case of a food shortage. Unlike beaver tails, platypus tails are covered in fur, which the mothers use to snuggle with their incubating eggs.

A platypus ankle spur. Photo by E.Lonnon at Wikimedia Commons.
7. Male platypuses have venomous ankle spurs. Their venom is strong enough to kill small animals and to create excruciating pain in humans. Since only males have it and they produce more venom during the breeding season, we think its main function may be to compete for mates and breeding territories.

8. Platypuses are knuckle-walkers with a reptilian gait. Although they are well-built for swimming with their webbed feet and legs on the sides of their bodies, these traits make it quite awkward to get around on dry land. To walk, they pull in their webbing and walk on their knuckles, exposing their claws. Like reptiles and salamanders, platypuses flex their spines from side-to-side, supported by their sprawling legs.



9. Platypuses have unusually low body temperatures. As unusual as they are, platypuses are still mammals, which are defined, in part, by their ability to generate most of their own body heat with their metabolism. Platypuses do this as well, but whereas most mammals maintain body temperatures between 37-40 degrees C (99-104 degrees F), platypuses are happy with a body temperature of 32 degrees C (90 degrees F). This lower metabolism reduces the amount of calories they need to eat.

10. They have no stomach. Stomachs are specialized protein-digesting chambers of digestive tracts that contain protein-digesting enzymes and acids to activate them. Not all animals have them, but most carnivores do. The most common exceptions to this rule are fish… and platypuses. Why? We don’t know for sure, but many of these animals consume diets high in calcium carbonate, which is a natural antacid. If their own diet would constantly neutralize their stomach acid, then the stomach really isn’t going to do them any good anyway.

11. They have 10 sex chromosomes! Most mammals have two sex chromosomes, one from each parent. An individual that has two X chromosomes is usually female and an individual that has one X and one Y chromosome is usually male. Thus, female mammals pass along an X chromosome to each offspring and males can pass along an X or a Y. But platypuses are not content to be normal in any way…They have 10 sex chromosomes: 5 from mom and 5 from dad. All 5 chromosomes from mom are Xs, whereas a male sperm either contains 5 Xs or 5 Ys. Birds also have two sex chromosomes, but in birds, individuals with two of the same type are usually male and individuals with different chromosomes are usually female. Their system is called ZW, where the mammalian system is XY. The platypus X chromosome is more similar than the X chromosome of other mammals to the bird Z chromosome.

12. The platypus genome is as much of a hodgepodge as its body. Only 80% of the platypus’ genes are like other mammals. Some of their genes have only previously been found in birds, reptiles, fish, or amphibians.

To learn about more weird animals, go here.

References:

Scheich, H., Langner, G., Tidemann, C., Coles, R., & Guppy, A. (1986). Electroreception and electrolocation in platypus Nature, 319 (6052), 401-402 DOI: 10.1038/319401a0

Warren, W., Hillier, L., Marshall Graves, J., Birney, E., Ponting, C., Grützner, F., Belov, K., Miller, W., Clarke, L., Chinwalla, A., Yang, S., Heger, A., Locke, D., Miethke, P., Waters, P., Veyrunes, F., Fulton, L., Fulton, B., Graves, T., Wallis, J., Puente, X., López-Otín, C., Ordóñez, G., Eichler, E., Chen, L., Cheng, Z., Deakin, J., Alsop, A., Thompson, K., Kirby, P., Papenfuss, A., Wakefield, M., Olender, T., Lancet, D., Huttley, G., Smit, A., Pask, A., Temple-Smith, P., Batzer, M., Walker, J., Konkel, M., Harris, R., Whittington, C., Wong, E., Gemmell, N., Buschiazzo, E., Vargas Jentzsch, I., Merkel, A., Schmitz, J., Zemann, A., Churakov, G., Ole Kriegs, J., Brosius, J., Murchison, E., Sachidanandam, R., Smith, C., Hannon, G., Tsend-Ayush, E., McMillan, D., Attenborough, R., Rens, W., Ferguson-Smith, M., Lefèvre, C., Sharp, J., Nicholas, K., Ray, D., Kube, M., Reinhardt, R., Pringle, T., Taylor, J., Jones, R., Nixon, B., Dacheux, J., Niwa, H., Sekita, Y., Huang, X., Stark, A., Kheradpour, P., Kellis, M., Flicek, P., Chen, Y., Webber, C., Hardison, R., Nelson, J., Hallsworth-Pepin, K., Delehaunty, K., Markovic, C., Minx, P., Feng, Y., Kremitzki, C., Mitreva, M., Glasscock, J., Wylie, T., Wohldmann, P., Thiru, P., Nhan, M., Pohl, C., Smith, S., Hou, S., Renfree, M., Mardis, E., & Wilson, R. (2008). Genome analysis of the platypus reveals unique signatures of evolution Nature, 453 (7192), 175-183 DOI: 10.1038/nature06936

Tuesday, March 14, 2017

The Physiology of Your “Sense of Self”

Quick! Name all of your senses!

Now, close your eyes and wave your arms over your head. Which of those senses are helping you know where your arms are in space?

The answer is the often-forgotten sense of proprioception. Proprioception (derived from the Latin for “sense of self”) is an animal’s sense of its body’s position in space. We have several different specialized receptor cells that all detect a change in body position in different ways.

Grays muscle picture by Mikael Haggstrom
at Wikimedia Commons.
If you raise your arms over your head as if you are going to grab a pull-up bar, then some muscles in your back (like your trapezius muscles), shoulders (like your deltoids and rotator cuff muscles), and arms (like your triceps) will contract. Muscles are all connected with tendons to the bones they pull on. When a muscle contracts, its tendons are stretched. Specialized proprioceptor cells called Golgi tendon organs merge with tendons and detect when their corresponding muscle is being stretched. Together, they inform the brain about muscle tension in muscles all across the body.

Grays muscle picture by Mikael Haggstrom
at Wikimedia Commons.

However, while some muscles will contract during your movement, other muscles in your chest (like your pecs) and arms (like your biceps) will stretch. Each muscle contains muscle spindles, another kind of specialized proprioceptor cell. Muscle spindles are wrapped around individual muscle fibers within the muscles. They send signals to the brain to let it know when the muscle is stretched and by how much.

Joint receptors are specialized proprioceptor cells located between bones in the capsular tissue of joints. When the angle of a joint changes, the bones and tissues put pressure on the joint receptor, causing it to send a signal to the brain. Your brain collects information from all of your Golgi tendon organs, muscle spindles and joint receptors to know the angle of each joint and the tension and length of each muscle in your body, and thus, your body’s position in space.

gif by Extremistpullup at Wikimedia Commons.
Some animals, and some individuals, are better at this than others. This guy should be pretty proud of his proprioceptive abilities (and strength). But then again, let’s see him try this:



Tuesday, March 7, 2017

Caught in My Web: Perplexing Animal Behaviors

Image by Luc Viatour at Wikimedia Commons.
Sometimes animals behave in such an odd manner, that even the animal behaviorists aren't sure what the heck they are doing or why. So for this edition of Caught in My Web, we just wonder.

1. Last month, a dog was hit and killed by a car. His fellow doggy-companion then used his nose to bury him. Was this a funeral? Is this just canine burying behavior? We don't know, but it's been seen before. This video is from 2013:



And here is another from 2015:


2. Have you seen this video of turkeys circling a dead cat?

3. An African elephant approaches a white rhino with a branch across his nose. Was he trying to play or was he bring aggressive? Either way, the rhino wasn't taking any chances. Watch the exchange here.

4. A South American Magellanic penguin swims 5,000 miles every year to be reunited with the man who saved his life. Read the heartwarming story here.

5. An octopus inflates itself like a giant balloon across the ocean floor and scientists can't agree if it is hunting or showing defense behavior. What do you think?

Tuesday, February 28, 2017

Astonishing Animal Sleeping Patterns (A Guest Post)

By Eugene Gabriel

Image from Pexels.
Sleeping patterns across the animal kingdom are just as amazingly interesting and diverse as the animal kingdom itself. While some sleep with half their brain alert, some can go weeks without sleeping. While some take power naps lasting only a minute, some can snooze for 3 years. Keep on reading for some astonishing yet adorable animal sleeping patterns.


Giraffes


The tallest mammal in the world has one of the shortest sleep requirements. Did you know giraffes can go weeks without sleep? When they do sleep it's for short bursts of only 5 minutes with a total of no more than 2 hours in a day. Giraffes sleep in an upright standing position with their neck curled up to rest their head on their hind. They curl up to sleep in a similar fashion while sitting too which is quite an adorable sight but a rare one too. That's because in the wild they always have to be on their toes and in case of a wild cat pouncing on the herd, it really is a task to get those long legs back on the ground and going.


Horses


Like giraffes, horses are also standing sleepers. They are able to lock their legs in a straight standing position in such a way that it doesn’t require much muscle effort. So in this way they can stay alert even in rest mode. But to experience REM (rapid eye movement) sleep they must sit down. This means that like us humans horses also dream.


Meerkats


Image from Ltshears at Wikimedia Commons.
Meerkats are pack animals and they sleep in the same way too. They do this by getting on top of each other and making a heap, like puppies. In this way they are able to stay warm in the cold desert night. The pack leader sleeps at the bottom getting the best sleep and staying protected from predators.


Desert snail


The longest nap award goes to the desert snail which has been known to snooze for three years.


Dolphins


Dolphins literally sleep with one eye open! When sleeping dolphins will only shut half of their brain and close the opposite eye (when the right part of the brain sleeps the left eye is closed). After two hours or so, the sides switch, so both eyes and brain hemispheres get their due rest. Sounds weird right? But unlike humans who breathe automatically, dolphins breathe consciously. This means that they cannot go into deep sleep because they could suffocate from lack of air and drown. So while one half of the brain rests, the other half remains active and controls breathing functions. This also helps to monitor dangers in the environment.


Ants


We see ants working day and night and it seems that they hardly ever sleep but research shows that ants takes about 253 power naps lasting 1.1 minutes, on a daily basis.


Otters


Otters sleep in the cutest way by laying their backs on the surface of water and holding hands with each other. They do this to prevent themselves from floating away. They sleep for around 6 hours a day.


Lions


Image from Charlesjsharp at Wikimedia Commons.
Sitting at the top of the food chain, lions and other big cats have no fear of predators. So once they have feasted on their prey they can take a long peaceful nap. Lions are known to sleep for 13 hours a day.


Swainson’s Thrushes


Migratory birds like Swainson’s Thrushes have to fly incredibly long distances. So they catch up on their sleep whilst flying and take hundreds of power naps lasting only a few seconds at a time. They have also adopted another form of sleep, like dolphins in which they rest one eye and one half of their brains while the other half of eye and brain remains alert.

Animals never cease to amaze us and the variety of ways in which animals sleep is just astonishing. But unlike us humans who can forget about everything as soon as we hit the hay, animals have to constantly monitor their surroundings for survival in the wild.


References:
Livescience
Huffington Post